

A CLIMATE-BASED WAVE AND STORM SURGE EMULATOR FOR LONG-TERM ANALYSIS OF COASTAL FLOODING AND EROSION

Laura Cagigal, Ana Rueda, Dylan Anderson, Peter Ruggiero, Mark A. Merrifield, Jennifer Montaño, Giovanni Coco, Fernando Méndez

MOTIVATION

Why is it needed?

- Probabilistic shoreline evolution
- Estimate the **predictions uncertainty** by means of wave ensembles
- Flooding probabilistic risk assessments

Why is it difficult?

- Needs to provide a continuous and long time series of wave conditions
- Needs to preserve **chronology** at different time scales from inter-annual to intra-storm
- Needs to be **worldwide** transferable
- Individual storms need to have realistic shapes

1 DAILY WEATHER TYPE CLASSIFICATION

- **2** CHRONOLOGY MODEL AT A DAILY SCALE
 - Probability of occurrence
 - Persistence
 - Transition probabilities
 - Intra-seasonal variability
 - Inter-annual variability

Obtain synthetic DWT sequences

- **2** CHRONOLOGY MODEL AT A DAILY SCALE
 - Probability of occurrence
 - Persistence
 - Transition probabilities
 - Intra-seasonal variability
 - Inter-annual variability

Obtain synthetic DWT sequences

LAREDO, SPAIN	
	963

	WAVE DATA	STORM SURGE DATA
IMPERIAL BEACH	BUOY	TIDAL GAUGE
TAIRUA	High Res. Wave Hindcast (SWAN)	REANALYSIS (DAC, Carrere & Lyard 2003)
LAREDO	BUOY	REANALYSIS (GOS, Cid et al., 2014)

MODEL INSTRUMENTAL

WAVE GENERATION AREA (ESTELA, Perez et al., 2014)

CHRONOLOGY MODEL

AUTOREGRESSIVE LOGISTIC REGRESSION MODEL

Anderson et al., 2019

PREDICTORS : ANNUAL WEATHER TYPE

ALR : DAILY WT vs PERPETUAL YEAR

ALR : DAILY WT vs ANNUAL WT

-0.04

2

4 6

6

2 4 6

-0.04

ALR : DAILY WT vs MADDEN JULIAN OSCILLATION

STRETCHING

STRETCHING

MONTECARLO SIMULATION

COMPARISON: MEAN REGIME

COMPARISON: EXTREME REGIME

LONG-SHORE WAVE POWER : IMPERIAL BEACH

b)

CROSS-SHORE EROSION : TAIRUA BEACH

BEACH ROTATION : LAREDO

LONG-SHORE WAVE POWER : IMPERIAL BEACH

CERC FORMULA (Komar, 1998) $P = ECn\sin(\theta)\cos(\theta) = \frac{1}{8}\rho_w g H^2 Cn\sin(\theta)\cos(\theta)$

CROSS-SHORE EROSION : TAIRUA BEACH, NZ

SUMMARY

Synthetic generation of wave time series preserving chronology at different scales from intra-storm to inter-annual

Synthetic generation of wave time series preserving chronology at different scales from intra-storm to inter-annual

Easy to link the most energetic conditions with large scale climatic patterns

- Synthetic generation of wave time series preserving chronology at different scales from intra-storm to inter-annual
 - Easy to link the most energetic conditions with large scale climatic patterns
 - Worldwide transferable

- Synthetic generation of wave time series preserving chronology at different scales from intra-storm to inter-annual
- Easy to link the most energetic conditions with large scale climatic patterns
 - Worldwide transferable

Could be adapted to generate wave time series under climate change scenarios

- Synthetic generation of wave time series preserving chronology at different scales from intra-storm to inter-annual
- Easy to link the most energetic conditions with large scale climatic patterns
 - Worldwide transferable
 - Could be adapted to generate wave time series under climate change scenarios

Provides a probabilistic framework to assess the uncertainty in model parameters and wave conditions

- Synthetic generation of wave time series preserving chronology at different scales from intra-storm to inter-annual
- Easy to link the most energetic conditions with large scale climatic patterns
 - Worldwide transferable
 - Could be adapted to generate wave time series under climate change scenarios
 - Provides a probabilistic framework to assess the uncertainty in model parameters and wave conditions

Laura Cagigal, Ana Rueda, Dylan Anderson, Peter Ruggiero, Mark A. Merrifield, Jennifer Montaño, Giovanni Coco, Fernando Méndez

lcag075@aucklanduni.ac.nz

